Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Reșat Ustabaș, ${ }^{\text {a }}$ Emine Salamci, ${ }^{\text {b }}$

 Ufuk Coruh, ${ }^{\text {c }}$ Ezequiel M. Vázquez-López ${ }^{\text {d }}$ and Metin Yavuz ${ }^{\text {e* }}$${ }^{\text {a }}$ Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Art and Sciences, Atatürk University, 25240 Erzurum, Turkey, ${ }^{\text {c Department of Computer Education }}$ and Instructional Technology, Educational Faculty, Ondokuz Mayıs University, 55200-Atakum-Samsun, Turkey, dDepartamento de Química Inorgánica, Facultade de Ciencias-Química, Universidade de Vigo, 36200-Vigo, Galicia, Spain, and ${ }^{\text {e }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey

Correspondence e-mail: rustabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.085$
$w R$ factor $=0.232$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(1 RS,2SR,6SR,7SR)-4,10-Dioxatricyclo[5.2.1.0 ${ }^{2,6}$]-dec-8-en-3-one

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$, contains two molecules. Each molecule involves one planar and two non-planar five-membered rings.

Comment

Since lactone (2) can be prepared optically pure, it becomes a potential precursor for the stereoselective synthesis of natural products (Bloch et al., 1985). Lactone (2) is also used as an intermediate in the synthesis of a cardiovascular agent (Patel et al., 1992). In addition, 7-oxanorbornene derivatives have been screened for their ability to inhibit protein phosphatase 2A (McCluskey et al., 2000). Lactone (2) was prepared by reduction of the exo maleic anhydride adduct (1) (Lee \& Herndon, 1978). Knowledge of the molecular structure of compound (2) is therefore important in order to understand its formation and reactivity.

Received 23 August 2006 Accepted 25 August 2006

(1)

(2)

The asymmetric unit of (2) contains two molecules (Fig. 1). The molecules involve five-membered planar $A(\mathrm{O} 1 A / \mathrm{C} 1 A /$ $\mathrm{C} 2 A / \mathrm{C} 7 A / \mathrm{C} 8 A)$ and $A^{\prime}(\mathrm{O} 1 B / \mathrm{C} 1 B / \mathrm{C} 2 B / \mathrm{C} 7 B / \mathrm{C} 8 B)$ and nonplanar $B(\mathrm{O} 3 A / \mathrm{C} 2 A / \mathrm{C} 3 A / \mathrm{C} 6 A / \mathrm{C} A), C(\mathrm{O} 3 A / \mathrm{C} 3 A-\mathrm{C} 6 A)$ and $B^{\prime}(\mathrm{O} 3 B / \mathrm{C} 2 B / \mathrm{C} 3 B / \mathrm{C} 6 B / \mathrm{C} 7 B), C^{\prime}(\mathrm{O} 3 B / \mathrm{C} 3 B-\mathrm{C} 6 B)$ rings. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

The dihedral angles between the planes $D(\mathrm{C} 2 A / \mathrm{C} 3 A / \mathrm{C} 6 A /$ $\mathrm{C} 7 A), E(\mathrm{O} 3 A / \mathrm{C} 3 A / \mathrm{C} 6 A), F(\mathrm{C} 3 A-\mathrm{C} 6 A)$ and $D^{\prime}(\mathrm{C} 2 B / \mathrm{C} 3 B /$ $\mathrm{C} 6 B / \mathrm{C} 7 B), E^{\prime}(\mathrm{O} 3 B / \mathrm{C} 3 B / \mathrm{C} 6 B), F^{\prime}(\mathrm{C} 3 B-\mathrm{C} 6 B)$ are $D / E=$ $59.75(22)^{\circ}, F / E=51.39(23)^{\circ}$ and $D^{\prime} / E^{\prime}=59.51(25)^{\circ}$ and $F^{\prime} /$ $E^{\prime}=51.06(27)^{\circ}$.

Experimental

Compound (2) was prepared according to a literature method (Eggelte et al., 1973). Compound (1) ($5.0 \mathrm{~g}, 0.03 \mathrm{~mol}$) in DMF (25 ml) was added to $\mathrm{NaBH}_{4}(1.14 \mathrm{~g}, 0.03 \mathrm{~mol})$ in DMF $(15 \mathrm{ml})$ over a period of 30 min and stirred for 3 h at 273 K . After evaporation of the solvent, a solid residue of the borate complex was obtained, which was hydrolysed with $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(75 \mathrm{ml})$. The hydrolysate was extracted with chloroform $(4 \times 50 \mathrm{ml})$. The organic extracts were washed with brine (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Recrystallization of compound (2) from dichloromethane/pentane (1:3) gave colorless crystals (yield $3.26 \mathrm{~g}, 71 \%$; m.p. 365-366 K).

organic papers

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$

$M_{r}=152.14$
Monoclinic, $P 2_{b} / c$
$a=17.110$ (4) A
$b=5.4621$ (12) ${ }^{\circ} \mathrm{A}$
$c=17.129$ (4) \AA
$\beta=119.711$ (4) ${ }^{\circ}$
$V=1390.4$ (6) \AA^{3}
Data collection
Bruker CCD area-detector
diffractometer
φ and ω scans
Absorption correction: none 6961 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.085$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1175 P)^{2}\right. \\
& \quad+2.0024 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (2), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bloch, R., Guibejampel, E. \& Girard, C. (1985). Tetrahedron Lett. 26, 40874090.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Eggelte, T. A., Koning, H. D. \& Huisman, H. O. (1973). Tetrahedron, 29, 24452447.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lee, M. W. \& Herndon, W. C. (1978). J. Org. Chem. 43, 518-???. Final page number?.
McCluskey, A., Keane, M. A., Mudgee, L. M., Sim, A. T. R., Sakoff, J. \& Quinn, R. J. (2000). Eur. J. Med. Chem. 35, 957-964.
Patel, R. N., Liu, M., Banerjee, A., Thottathil, J. K., Kloss, J. \& Szarka, L. J. (1992). Enzym. \& Microbiol. Technol. 14, 778-784.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

